Search results for "Hadamard design"

showing 6 items of 6 documents

Some new Hadamard designs with 79 points admitting automorphisms of order 13 and 19

2001

Abstract We have proved that there exists at least 2091 mutually nonisomorphic symmetric (79,39,19)-designs. In particular, 1896 of them admit an action of the nonabelian group of order 57, and an additional 194 an action of the nonabelian group of order 39.

Group (mathematics)Existential quantificationOrbit structureAutomorphismAction (physics)Automorphism groupOrbit structureTheoretical Computer ScienceCombinatoricsHadamard transformHadamard design; Automorphism group; Tactical decomposition; Orbit structureHadamard designDiscrete Mathematics and CombinatoricsOrder (group theory)Tactical decompositionHadamard matrixMathematicsDiscrete Mathematics
researchProduct

Some Hadamard designs with parameters (71,35,17)

2002

Up to isomorphisms there are precisely eight symmetric designs with parameters (71, 35, 17) admitting a faithful action of a Frobenius group of order 21 in such a way that an element of order 3 fixes precisely 11 points. Five of these designs have 84 and three have 420 as the order of the full automorphism group G. If |G| = 420, then the structure of G is unique and we have G = (Frob21 × Z5):Z4. In this case Z(G) = 〈1〉, G′ has order 35, and G induces an automorphism group of order 6 of Z7. If |G| = 84, then Z(G) is of order 2, and in precisely one case a Sylow 2-subgroup is elementary abelian. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 144–149, 2002; DOI 10.1002/jcd.996

Combinatoricssymmetric design; Hadamard design; orbit structure; automorphism groupInner automorphismSylow theoremsStructure (category theory)Discrete Mathematics and CombinatoricsOuter automorphism groupOrder (group theory)Abelian groupElement (category theory)Frobenius groupMathematicsJournal of Combinatorial Designs
researchProduct

On the additivity of block designs

2016

We show that symmetric block designs $${\mathcal {D}}=({\mathcal {P}},{\mathcal {B}})$$D=(P,B) can be embedded in a suitable commutative group $${\mathfrak {G}}_{\mathcal {D}}$$GD in such a way that the sum of the elements in each block is zero, whereas the only Steiner triple systems with this property are the point-line designs of $${\mathrm {PG}}(d,2)$$PG(d,2) and $${\mathrm {AG}}(d,3)$$AG(d,3). In both cases, the blocks can be characterized as the only k-subsets of $$\mathcal {P}$$P whose elements sum to zero. It follows that the group of automorphisms of any such design $$\mathcal {D}$$D is the group of automorphisms of $${\mathfrak {G}}_\mathcal {D}$$GD that leave $$\mathcal {P}$$P in…

Discrete mathematicsAlgebra and Number Theory010102 general mathematics0102 computer and information sciencesAutomorphism01 natural sciencesCombinatorics010201 computation theory & mathematicsAdditive functionDiscrete Mathematics and CombinatoricsSettore MAT/03 - Geometria0101 mathematicsInvariant (mathematics)Symmetric designAbelian groupBlock designs Symmetric block designs Hadamard designs Steiner triple systemsMathematicsJournal of Algebraic Combinatorics
researchProduct

On the representations in GF(3)^4 of the Hadamard design H_11

2020

In this paper we study the representations of the 2-(11,5,2) Hadamard design H_11 = (P,B) as a set of eleven points in the 4-dimensional vector space GF(3)^4, under the conditions that the five points in each block sum up to zero, and dim ‹P› = 4. We show that, up to linear automorphism, there exist precisely two distinct, linearly nonisomorphic representations, and, in either case, we characterize the family S of all the 5-subsets of P whose elements sum up to zero. In both cases, S properly contains the family of blocks B, thereby showing that a previous result on the representations of H_11 in GF(3)^5 cannot be improved.

Block designs Hadamard designsSettore MAT/05 - Analisi MatematicaSettore MAT/03 - Geometria
researchProduct

Additivity of affine designs

2020

We show that any affine block design $$\mathcal{D}=(\mathcal{P},\mathcal{B})$$ is a subset of a suitable commutative group $${\mathfrak {G}}_\mathcal{D},$$ with the property that a k-subset of $$\mathcal{P}$$ is a block of $$\mathcal{D}$$ if and only if its k elements sum up to zero. As a consequence, the group of automorphisms of any affine design $$\mathcal{D}$$ is the group of automorphisms of $${\mathfrak {G}}_\mathcal{D}$$ that leave $$\mathcal P$$ invariant. Whenever k is a prime p,  $${\mathfrak {G}}_\mathcal{D}$$ is an elementary abelian p-group.

Algebra and Number Theory010102 general mathematics0102 computer and information sciencesAutomorphism01 natural sciencesCombinatoricsKeywords Affine block designs · Hadamard designs · Additive designs · Mathieu group M11010201 computation theory & mathematicsSettore MAT/05 - Analisi MatematicaAdditive functionDiscrete Mathematics and CombinatoricsAffine transformationSettore MAT/03 - Geometria0101 mathematicsInvariant (mathematics)Abelian groupMathematics
researchProduct

Bollettino di Matematica pura e applicata

2020

The paper emphasizes some the advances of knowledge in mathematics problems ad new applications. The Bollettino is open to the contribution of Italian or foreign researchers.

Block designLebesgue improper integralBmPaSettore MAT/05 - Analisi MatematicaBoll. di mat. Pura ed appl.Liquid Helium II.Hadamard designFirst return integralNon Equilibrium Thermodynamic
researchProduct